
Resilient Federated Learning on Embedded Devices
with Constrained Network Connectivity

Zihan Li†, Han Liu†, Ao Li†, Ching-hsiang Chan†,
Yevgeniy Vorobeychik†, William Yeoh†, Wenjing Lou‡, Ning Zhang†

† Washington University in St. Louis, MO, USA
‡ Virginia Polytechnic Institute and State University, VA, USA

{tomson.li, h.liu1, ao, c.ching-hsiang, yvorobeychik, wyeoh, zhang.ning}@wustl.edu, wjlou@vt.edu

Abstract—Federated learning enables decentralized model
training while preserving data privacy. However, since the learn-
ing process overlays the physical network infrastructure, the
efficiency of learning can be impacted by network connectivity.
In this work, we conducted extensive experiments to empirically
characterize the impacts and leverage the insights to propose
an adaptive federation framework, where clients with limited
bandwidth are only prompted to transmit adaptively compressed
gradient updates when the gradient similarity score is similar
between the local and global models. Our evaluation in simulated
environments and on real hardware devices shows bandwidth
savings of 60% to 78% compared to state-of-the-art methods.

I. INTRODUCTION

Federated learning (FL) has emerged as a transformative
paradigm in decentralized machine learning, allowing dis-
tributed devices to collaboratively train a global model while
preserving the privacy of local data [1]. This approach has
gained widespread attention for its applications in privacy-
sensitive domains such as healthcare [2], [3], finance [4],
smart devices [5], and personalized services [6], [7]. Federated
learning operates as a distributed system of nodes with varying
computing power and network connectivity. As an overlay on
existing network infrastructure, its success heavily depends on
underlying network capabilities.

Existing Solutions and Limitations: Recognizing this chal-
lenge, existing works have investigated latency or bandwidth
constraint optimization techniques. Protocol-level optimiza-
tions [8], [9] focus on timing alignment to mitigate stal-
eness issues due to network latency, whereas model-level
techniques [10], [11] focus on reducing the size of the gradient
for transmission due to bandwidth constraints. However, all of
these strategies are static, which are pre-defined according to
the target execution environment and network conditions. In
contrast, real-world network environments are often highly dy-
namic, requiring strategies that can adapt to real-time changes
in network connectivity.

Examination of FL Resiliency: To understand the challenges
and opportunities, we conducted an empirical study of FL
under different network conditions and varying model com-
plexities. Our investigation revealed two key insights that
hold valid across different datasets, models, data distributions,
and both synchronous and asynchronous FL settings: (1) A
moderate level of client update dropouts (approximately 20%)

has minimal adverse effects on global model accuracy. (2)
In asynchronous FL, model staleness poses an even more
negative impact on accuracy compared to client dropouts.

Our Solution – AdaFL: This paper proposes AdaFL, a novel
adaptive FL framework that operates in real-time to enhance
communication efficiency while maintaining model perfor-
mance. Based on our first insight, we propose an adaptive node
selection algorithm to optimize on client selection. Instead of
requesting updates from all available clients, AdaFL adaptively
evaluates the utility of each update on the global model’s
learning trajectory and selectively chooses updates from clients
with meaningful updates and sufficient network bandwidth.
This approach minimizes communication overhead by priori-
tizing impactful updates while preserving model performance.
Based on our second insight, we conclude that a timely model
update from server to client is crucial for model accuracy.
Hence, to ensure the timeliness of the update, we propose
to adjust the gradient compression rate dynamically. This
approach minimizes unnecessary communication overhead for
clients with less impactful updates and more constrained
bandwidth while preserving sufficient information from clients
that provide meaningful contributions, allowing both timely
and informational model updates.

Implementation and Evaluation: We have conducted an
extensive evaluation of AdaFL across different datasets and
models. The evaluation results demonstrate that AdaFL out-
performs state-of-the-art (SOTA) FL methods up to 30% on
testing accuracy while reducing 60% to 78% communication
cost. Moreover, AdaFL incurs a negligible computational
overhead, with an average expansion of 0.05% CPU cycles.

Contributions: This paper makes the following contributions:
• Empirical Study of FL Resilience: We empirically

showed that FL can remain robust under asynchronous
updates and client dropouts. This finding underscores
the opportunity for optimizing communication without
compromising accuracy.

• Design of AdaFL: We propose a novel FL framework
that selectively aggregates client updates and adapts the
clients’ gradient compression rates based on the utility of
their contributions and their network connectivity.

• Evaluation: We demonstrate that AdaFL outperforms
state-of-the-art (SOTA) FL methods.

© 2025 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. RELATED WORK

Existing works generally address network constraints from
either protocol-level or model-level perspectives.

Protocol-level: Existing protocol optimizations primarily tar-
get reducing wait time from network latency. Zhu et al. [8] par-
allelize communication and training, delaying server aggrega-
tion such that client-side wait time for stragglers is minimized.
Zhang et al. [9] reduces server aggregation blocking, enabling
global model updates during aggregation. FedAT [12] intro-
duces a tiering module that groups clients by network perfor-
mance for tier-based aggregation. However, these approaches
focus solely on improving latency but often neglect model
performance implications. In practice, reduced latency doesn’t
always translate to better model quality. AdaFL addresses this
limitation by jointly optimizing both objectives—minimizing
latency while maintaining model performance.

Model-level: At the model level, reducing transmitted data is a
common strategy, achieved through gradient quantization [11],
[13] or compression [10], [14], [15]. Another approach en-
codes local models into lower-dimensional representations to
minimize transmission overhead [16]. Xiong et al. [17] replace
full model updates with synthesized datasets, while Wang et
al. [18] use progressive learning to shrink model size. Though
these methods mitigate communication bottlenecks to some
extent, they often assume the network condition is static,
whereas, in practice, network conditions are highly dynamic.

III. EXPLORATION OF FL NETWORK RESILIENCY

A. Modeling Impacting Factors on FL

In FL, client-server interactions involve downloading the
global model and uploading local updates. In each com-
munication round, clients download the global model from
the server and perform model training. After local training,
clients upload their updated local models to the server for
aggregation. Varying network conditions can introduce latency
on the uplink, downlink, or both.

We formalize the impact of network conditions on FL
performance by analyzing its underlying optimization process.
The optimization problem in FL is:

min
w

F (w) =

N∑
i=1

piFi(w), (1)

where w ∈ Rd represents the global model parameters, N is
the total number of participating clients, Fi(w) is the local loss
function for client i, and pi ≥ 0 is the weighting coefficient
assigned to client i. Typically, in synchronous settings, pi is
equal to wi, which is defined as wi = ni/n, where ni denotes
the number of data samples held by client i, and n =

∑N
i=1 ni

represents the total number of data samples across all clients.
During each communication round n, client i computes

and sends its local gradient gni to the server. The server then
performs aggregation using the following equation:

Gn+1 = Gn +

N∑
i=1

pig
n
i , (2)

where Gn is the global gradient at round n, and Gn+1 is
the updated global gradient after aggregation.

To assess the impact of network delay, we analyze two
scenarios: synchronous FL and asynchronous FL. Previous
research has predominantly focused on synchronous FL [19],
[20], [21], where the server waits for all clients to submit their
local updates before aggregating them to update the global
model. Let Ψi denote the computation time for client i, while
Υu

i and Υd
i represent the uplink and downlink network delays

for client i, respectively. Under the synchronous protocol, the
total time required for one global iteration is:

Tsync = max
i

(Ψi +Υu
i +Υd

i). (3)

Thus, the synchronization time is constrained by the slowest
client due to network delays. Furthermore, if an update from
a particular client fails to reach the server, e.g., in cases of
unreliable connections, the server may indefinitely wait for this
update. The server can instead impose a maximum wait time,
dropping any delayed updates beyond this threshold; however,
this approach may reduce the accuracy of the global model.

For asynchronous FL, we denote Tn
i as the total time

including the training time for performing its local work
and sending it to the server aggregation, thus we have
Tn
i = Ψi,n +Υu

i,n +Υd
i,n, we assume a typical asynchronous

setting where the server will wait for ∆tn to perform the
aggregation [22], [23]. Note that if the server sets the round
time ∆tn = maxi T

n
i , the aggregation occurs after receiving

contributions from all clients; on the client, if ∆tn = mini T
n
i ,

it will become fully asynchronous, where every client update
results in a server model update.

Comparing Tn
i with ∆tn indicates whether a client is

participating in the optimization round or not. When I(Tn
i ≤

∆tn) = 1, the local work of client i is used to create the
new global model θn+1, while client i does not contribute
when I(Tn

i ≤ ∆tn) = 0. To account for their scenarios of
asynchronous updates, we introduce the aggregation weight
di(n) corresponding to the weight given by the server to client
i at optimization round n, we can then denote it as:

pi(n) = I(Tn
i ≤ ∆tn)wi, (4)

where wi follows the same definition as in synchronous FL,
generally referring to the proportion of data samples owned by
client i. Under asynchronous aggregation, the global update is
performed using the following scheme:

Gn+1 = Gn +

N∑
i=1

I(Tn
i ≤ ∆tn)pig

n
i . (5)

From the above analysis, network conditions primarily
influence the client dropout rate in synchronous settings and
the staleness of client updates in asynchronous settings.

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(a) Dropouts (Sync, IID, CIFAR)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(b) Data loss (Sync, IID, CIFAR)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(c) Dropouts (Sync, non-IID, CIFAR)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(d) Data loss (Sync, non-IID, CIFAR)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(e) Dropouts (Sync, IID, MNIST)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(f) Data loss (Sync, IID, MNIST)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(g) Dropouts (Sync, non-IID, MNIST)

0 10 20 30 40 50 60 70 80
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(h) Data loss (Sync, non-IID, MNIST)

0 50000 100000150000200000250000
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(i) Dropouts (Async, IID, CIFAR)

0 200000 400000 600000 800000
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(j) Staleness (Async, IID, CIFAR)

0 2500 5000 7500 10000 12500
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(k) Dropouts (Async, IID, MNIST)

0 10000 20000 30000 40000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
Baseline
10% Clients
20% Clients
50% Clients
80% Clients

(l) Staleness (Async, IID, MNIST)

Fig. 1. Testing accuracy of ResNet-50 on CIFAR-10 and CNN on MNIST under different network conditions, data distributions, and FL protocols.

B. Empirical Measurement of Network Impact on FL

To understand how these factors influence client-server
interactions and the overall training process, we simulated
diverse link latencies and bandwidth constraints. Our ex-
amination covered both synchronous and asynchronous FL
protocols to analyze their behavior under challenging network
conditions. Additionally, we compared performance across
different data distribution settings, including IID (Independent
and identically distributed) and non-IID scenarios, to highlight
how data heterogeneity interacts with network dynamics.
Synchronous and Asynchronous FL: The impact of network
conditions on FL performance differs between synchronous
and asynchronous protocols. In synchronous FL, high latency
causes intermittent client updates to reach the server (data
loss), disrupting aggregation and delaying global model up-
dates. In asynchronous FL, high latency exacerbates staleness,
where client updates are based on outdated global model
versions (staleness). In our experimental setup, high-latency
clients in synchronous FL update the server every other
communication round, while in asynchronous settings, they
update at a rate 3× slower than other clients, contributing
only after others have updated three times.
Network Conditions: We primarily emulate various networks
from the perspectives of bandwidth and link conditions.
Bandwidth: The effect of link bandwidth is consistent across
both protocols: insufficient bandwidth prevents clients from
transmitting updates (dropouts), reducing data diversity and
contributing to the global model.
Link Conditions: We consider uplink and downlink collec-
tively, as their impact on model updates is equivalent. Specif-

ically, we examine two network conditions: link latency and
link bandwidth. High latency delays client updates, slowing the
server’s aggregation process. Insufficient bandwidth prevents
clients from transmitting updates, excluding their contributions
from training. We use simulated network data from the ns3
network simulator [24] to model suboptimal network links for
clients in both synchronous and asynchronous FL scenarios.

Data Distributions: We consider both IID and non-IID data
distributions, following the non-IID setting described in [19].
IID data simplifies training by ensuring consistent client con-
tributions and serves as a baseline for ideal conditions. How-
ever, real-world applications, such as healthcare and mobile
services, typically involve non-IID data, where heterogeneous
client data can slow convergence, reduce accuracy, and amplify
communication bottlenecks and dropouts.

Testing Models and Platforms: We implemented a fully
synchronous FL protocol using FedAvg [19] and a fully
asynchronous FL protocol using FedAsync [22], both com-
monly used as baselines in existing works. We selected 10
clients and varied the proportion of unreliable clients in each
experiment. For model training, we used ResNet-50 [25] on
the CIFAR-10 [26] dataset and another typical CNN model
used as a baseline in prior studies [27] on the MNIST [28]
dataset. The ResNet-50 model is a deep architecture with 50
layers and residual connections. The CNN model consists of
two 5×5 convolution layers: the first layer has 20 output
channels, and the second has 50, each followed by 2×2 max
pooling. Evaluations were conducted on a system with an 18-
core Intel® Core™ i9-7980XE CPU, 64 GB DRAM, and an
NVIDIA RTX 3090 GPU.

Adaptive Gradient
Compression

Client #1

Client #2

Client #3

Client #N Server

Parameters

Utility Score

Adaptive
Node Selection

. . .

drop #1 #2 #3 #4 #5

Utility Scores

Update
Request

Fig. 2. Overview of AdaFL.

Results: Figure 1 shows the measurement results from our
empirical study, with all experiments repeated 10 times to
reduce randomness. Figure 1(a) to Figure 1(h) shows that
10% to 20% dropout and data loss had a negligible impact
on overall performance in most cases. However, data loss
exhibited a more pronounced negative effect due to the noise
introduced by stragglers. In terms of model and dataset com-
plexity, the impact of a higher proportion of stragglers was
more significant, as shown in Figure 1(a),(e). Interestingly, in
the CIFAR-10 experiments under non-IID settings, scenarios
with 10% to 20% stragglers outperformed the baseline, as
shown in Figure 1(c). In asynchronous settings, staleness con-
sistently led to lower accuracy and convergence rates across all
conditions than dropouts. Due to staleness, it requires a much
longer time to reach a similar accuracy compared to dropouts,
as shown in Figure 1(i) to Figure 1(l).

Insights: We derived two key insights:
• A small amount of client dropout and data loss have a

minimal negative impact on the overall testing accuracy
and convergence rate in synchronous and asynchronous
FL settings. This leaves headroom for the optimization of
client selection to reduce communication costs. Notably,
for non-IID data distributions, the client participation
rate has a limited effect on overall testing accuracy.
This observation is consistent with the findings of Li et
al. [29], which proves that, under non-IID settings, the
convergence rate weakly replies to the client participation
ratio. In a real-world deployment, client data is naturally
non-IID, indicating FL robustness to partial client partic-
ipation under such data distributions.

• In asynchronous FL, the effect of staleness (outdated
updates) has a more significant impact on overall testing
accuracy compared to client dropouts, highlighting the
sensitivity of asynchronous protocols to temporal mis-
alignment. Chen et al. [30] also demonstrate that staleness
can increase the variances and affect the convergence of
the global model. This motivates us to adjust gradient
granularity due to network constraints adaptively.

IV. DESIGN

Overview: Our empirical study reveals that FL exhibits a
degree of tolerance to lower client participation rates, with no
significant negative impact on overall training performance.
However, staleness has a more detrimental effect on model
accuracy than client dropouts. Building on these insights,

we propose a utility and network connectivity guided FL
framework, AdaFL, as shown in Figure 2. Unlike traditional
optimization approaches that rely on link conditions, AdaFL
leverages gradient similarity to calculate a utility score and
adaptively select clients for contributing to the global model.
We eliminate unnecessary communication costs associated
with lower-impact contributions by prioritizing clients with
higher utility scores. To further minimize communication
overhead and mitigate staleness effect, AdaFL incorporates
deep gradient compression [10], dynamically adjusting the
compression rate based on feedback from utility score ranking.
This combined approach optimizes communication efficiency
while maintaining robust model performance.

Algorithm 1: Adaptive Node Selection
Input: Global model gradient vector gG ∈ Rd, Set of local gradients

{gi}Ni=1, where gi ∈ Rd for client i, Number of clients to select
K ∈ N, where 1 ≤ K ≤ N , Utility threshold τ ∈ [0, 1]

Output: Selected client set Cselected ⊆ {1, . . . , N}
Initialize: Cselected ← ∅
Utility Score Computation:
for i← 1 to N do

Compute utility score: Si ← f(Bdown
i , Bup

i , U(gi, ĝ))
end
Client Filtering:

Cfiltered ← {i ∈ {1, . . . , N} : Si ≥ τ}
Client Ranking and Selection:

Sort Cfiltered by Si in descending order
K′ ← min(K, |Cfiltered|)
Cselected ← First K′ elements of sorted Cfiltered

Return: Cselected
Subject to:

• |Cselected| ≤ K
• ∀i ∈ Cselected : Si ≥ τ
• ∀i ∈ Cselected, j /∈ Cselected : Si ≥ Sj

Adaptive Node Selection: Our extensive experiments reveal
that occasionally excluding certain clients does not negatively
impact convergence accuracy, especially under non-IID set-
tings. This observation suggests that a smaller participation
ratio can be set to alleviate the straggler’s effect without
hurting model accuracy. Building on this insight, we propose
an adaptive node selection algorithm to optimize client par-
ticipation. In each training round, our approach dynamically
prioritizes selecting the most impactful clients based on their
contributions to the global model. Upon receiving the global
model from the server, the client interrupts its current training
process to calculate a utility score. This score determines
whether the client should update its local model to align
with the global model or continue with its existing training
state, minimizing additional communication and computation
overhead. The utility score Si for each client i is defined as:

Si = f(Bdown
i , Bup

i , U(gi, ĝ)) (6)

Here, Si is a function of bandwidth (Bdown
i ,Bup

i) and similar-
ity metric U , which measures the similarity between the gradi-
ent of the local model gi and the gradient of the global model
ĝ from previous round. We use cosine similarity, commonly
used in existing ML works [31], [32], to measure the similarity
between two models. Other metrics, such as L2 norm and
Euclidean distance [33], can also be used as a similarity metric
to measure the local gradient importance toward the global

model. A high utility score between local and global gradients
indicates alignment, suggesting that a client’s update will
likely contribute positively to the global model’s convergence.
Conversely, a low utility score represents misalignment, indi-
cating potential noise or convergence impediments. Based on
this utility score, we establish a ranking system that prioritizes
clients whose gradient directions align more closely with the
global gradient, as their updates are more likely to enhance
model performance. Furthermore, because cosine similarity is
directionally sensitive, it captures both positive and negative
gradient directions. This directional awareness allows it to
remain robust even during oscillations caused by high learning
rates (typically in SGD), ensuring consistent detection of es-
sential gradient patterns. To effectively manage heterogeneous
data distributions across the client network and mitigate the
impact of these oscillations, AdaFL integrates a warm-up
stage designed to stabilize directional oscillations early in
training. During these crucial early rounds, we maintain equal
participation from all clients, enabling the global model to
adapt gradually to diverse data patterns without premature
specialization. Following this warm-up period, AdaFL tran-
sitions to a selective participation model, where only top-
ranked clients—determined by the utility score—contribute to
each training round. This adaptive selection strategy strikes
an optimal balance between computational efficiency and
model convergence quality. This adaptive selection algorithm
is detailed in Algorithm 1.

Adaptive Gradient Compression: The second component
addresses the critical challenge of communication overhead
in FL through an adaptive compression strategy. While gra-
dient compression effectively reduces communication costs,
it must be carefully calibrated to prevent convergence degra-
dation. We introduce a dynamic compression mechanism that
changes the compression ratio based on the utility score (equa-
tion 6), preserving essential information while minimizing
bandwidth consumption. Building upon deep gradient com-
pression (DGC) [10], our approach selectively transmits signif-
icant updates while accumulating minor gradients locally. The
compression ratio is adjusted based on the utility score: clients
with higher utility scores receive less compression to preserve
important information, while updates from less critical clients
are compressed more aggressively. This selective transmission
strategy reduces bandwidth requirements while maintaining
model convergence through local gradient accumulation. To
enhance compression effectiveness, we integrate two key
DGC components: momentum correction and local gradient
clipping. Momentum correction harmonizes sparse updates
with dense updates temporally, mitigating convergence issues
from delayed transmissions. Local gradient clipping, applied
pre-accumulation, prevents gradient explosion and maintains
training stability under high compression rates. During initial
warm-up rounds, we maintain low compression rates across
all clients to ensure robust model initialization. As the training
progresses, compression rates adapt continuously based on the
utility score, optimizing the balance between communication

efficiency and update significance.

TABLE I
SYNCHRONOUS FL EVALUATION RESULTS

Synchronous
FL Methods

#
Clients

Particip.
Rate

Update
Freq.

Cost
Reduc. (%)

Gradient
Size

Compress.
Ratio

Top 1 Accuracy
(IID / non-IID)

FedAvg 10 0.5 400 -50% 1.64MB 1x MNIST: 93.6% / 86.88%
CIFAR-100: 62.34% / 55.83%

FedAdam 10 0.5 400 -50% 1.64MB 1x MNIST: 93.06% / 86.62%
CIFAR-100: 61.76% / 54.92%

FedProx 10 0.5 400 -50% 1.64MB 1x MNIST: 93.31% / 85.72%
CIFAR-100: 62.02% / 54.89%

SCAFFOLD 10 0.5 400 -50% 1.64MB 1x MNIST: 93.13% / 90.35%
CIFAR-100: 61.80% / 57.73%

AdaFL 10 Adaptive 233 -70.88% 8 - 420KB 210x - 4x MNIST: 93.43% / 87.47%
CIFAR-100: 61.86% / 56.29%

TABLE II
ASYNCHRONOUS FL EVALUATION RESULTS

Asynchronous
FL Methods

#
Clients

Particip.
Rate

Update
Freq.

Cost
Reduc.

Gradient
Size

Compress.
Ratio

Top 1 Accuracy
(IID / non-IID)

FedAsync 10 0.5 400 -50% 1.64 MB 1x MNIST: 93.25% / 85.69%
CIFAR-100: 61.39% / 54.28%

FedBuff 10 0.5 400 -50% 1.64 MB 1x MNIST: 93.72% / 88.02%
CIFAR-100: 62.21% / 56.72%

AdaFL 10 Adaptive 172 -78.5% 16KB - 400KB 105x - 4x MNIST: 93.58% / 89.11%
CIFAR-100: 62.14% / 57.69%

V. EVALUATION

We evaluated AdaFL with other FL methods to answer the
following three questions:

Q1. How does AdaFL perform (testing accuracy rate)
compared with other optimization methods?

Q2. Can AdaFL significantly reduce communication cost
while ensuring training performance?

Q3. What is the overhead of AdaFL?

Experimental Settings: We compared AdaFL to existing
state-of-the-art approaches in both synchronous and asyn-
chronous FL. In the synchronous FL domain, we bench-
marked our method against FedAvg [19], FedAdam [34],
FedProx [20], and SCAFFOLD [21]. Under synchronous
context, AdaFL used top − k topology setting, where we
perform weights averaging from k clients for each com-
munication round. For asynchronous FL comparisons, we
evaluated against FedAsync [22] and FedBuff [35]. Under
asynchronous context, AdaFL adapts fully asynchronous FL,
where the server upgrades its global model each time it
receives a gradient update. To ensure fair comparisons, we
maintained consistency across all experiments using the same
CNN architecture and MNIST dataset from our empirical
study. We chose rp = 0.5 as our participation rate out of
10 clients and strictly adhered to other hyperparameters for
each baseline method while conducting all evaluations on our
established experimental platform. We conduct all experiments
under a fixed bandwidth to observe the reduction cost. To
further validate the effectiveness of AdaFL on more complex
models and datasets, we evaluated it using VGG-Net [36] on
CIFAR-100 [26]. Additionally, we conducted experiments with
20 to 100 clients to assess its scalability, demonstrating its
robustness across varying client participation levels.
Effectiveness: Figure 3 plots the model performance of eval-
uated frameworks. It can be observed that AdaFL has a
higher convergence rate than existing works, as our training
process is dynamically adapted and guided by the utility score.

0 5 10 15 20 25 30
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 (

%
)

Unreliable Clients %
AdaFL
FedAvg
FedProx
FedAdam
SCAFFOLD

(a) Sync, IID, MNIST

0 5 10 15 20 25 30
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
AdaFL
FedAvg
FedProx
FedAdam
SCAFFOLD

(b) Sync, non-IID, MNIST

0 1000 2000 3000 4000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
AdaFL
FedAsync
FedBuff

(c) Async, IID, MNIST

0 1000 2000 3000 4000 5000 6000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (
%

)

Unreliable Clients %
AdaFL
FedAsync
FedBuff

(d) Async, non-IID, MNIST

Fig. 3. Testing accuracy of CNN on MNIST for Synchronous and Asynchronous FL Protocols.

All frameworks we compared have a fixed participation rate,
while ours are adjusted dynamically where k ≤ 5. As shown
in Figure 3, our learning curve is higher and more stable,
especially under non-IID settings. In Figure 3(b), AdaFL has
higher overall testing accuracy and a more stable learning
curve from round 1 to round 5, showing the effectiveness of
AdaFL under non-IID data distributions. In addition, AdaFL
has a significantly higher convergence rate for asynchronous
FL under non-iid settings than other frameworks, as shown
in Figure 3(d). At T = 1000s, AdaFL reached around 80%
testing accuracy where FedAsync is around 10% and FedBuff
is around 50%. FedBuff has a lower noise in non-IID training
due to its optimization of the buffer for weight averaging.
However, AdaFL still has a higher convergence rate at the
beginning of the training and can converge to a higher testing
accuracy of 89.11% compared to 88.02% for FedBuff.

Answer to Q1. Under both IID and non-IID data distribu-
tions, AdaFL can outperform other methods with a higher
convergence rate and testing accuracy. Specifically, under non-
IID data distributions, the accuracy improvements ranged from
5% up to 70%. The results indicate the importance of the
utility score guided training, especially under non-IID settings.

Communication Reduction: Table I and Table II summarizes
the communication cost reduced from AdaFL. For all methods
we compared, we set a fixed participation rate of rp = 0.5
for each communication round, while ours has a dynamic
participation rate of rp ≤ 0.5 where rp is a positive value. As
a result, all compared methods have a fixed update frequency,
where clients update 400 times to the server for global model
updates. We consider the ideal update frequency to be 800
times when all clients participate. In synchronous settings,
AdaFL achieved an average of 233 update frequencies to the
server, which reduced 42% unnecessary updates compared to
other methods and reduced 70.88% overall communication
costs. Similarly, in asynchronous settings, AdaFL had an aver-
age of 172 update frequencies, which reduced 57% of updates
compared to others and reduced 78.5% overall communication
costs. On the other hand, we further reduced communication
costs by applying gradient compression, which AdaFL reached
a compression ratio of up to 210x. This allows the server and
clients to transmit gradient updates faster, which is beneficial
under asynchronous contexts where the server can have a
higher convergence rate from more frequent updates.

Answer to Q2. AdaFL reduces communication costs signif-
icantly in two aspects: update frequencies and gradient size.

While the communication cost is reduced, AdaFL performance
is still robust, as discussed previously.
Overhead: We break down the overhead into two individ-
ual components: overhead on utility score calculation and
gradient compression. We performed an ablation study using
a Raspberry Pi cluster to validate our framework’s adapt-
ability across heterogeneous devices. Our experimental setup
comprised a ten-node cluster configuration, where we trained
a CNN model on the MNIST dataset. We utilized perf, a
Linux performance profiling tool, and recorded CPU cycle
counts with and without AdaFL to measure the performance
overhead induced by the two components. With a baseline
cycle count of 8,589,175,469,216, our experimental results
show a maximum of cycle counts for utility score calculation
is 8,783,108,492,282, which is only around 0.05% more than
the baseline. On the other hand, the performance overhead
added for gradient compression is larger than the utility score
calculation. However, clients can save computational resources
from training and gradient compression based on the utility
score. If the utility score for a client is low, the client can halt
training until it can provide meaningful gradients to the server
(i.e., wait for the next global update). As a result, the cost
reduction from Table I and II also shows computational cost
reduction. The overall overhead is negligible compared to the
cost reduction benefit from the utility score calculation.

Answer to Q3. AdaFL adds additional overhead more sig-
nificantly from gradient compression than utility score calcu-
lation. However, the computational cost reduction benefit from
the adaptive client selection process significantly balances the
overhead from gradient compression computation. Hence, the
overall overhead is negligible.

VI. CONCLUSION

This paper empirically studies factors affecting FL per-
formance, revealing resilience to client dropouts. Leveraging
this, we introduce AdaFL for online adaptation. Evaluations
show AdaFL outperforms SOTA FL methods by up to 30% in
testing accuracy while ensuring scalability and robustness in
dynamic environments. Additionally, AdaFL incurs negligible
computational overhead.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback.
This work was partially supported by the NSF (CNS-
2154930, CNS-2229427), ARO (W911NF-24-1-0155), and
ONR (N00014-24-1-2730, N00014-24-12663).

REFERENCES

[1] N. Wang, Y. Xiao, Y. Chen, N. Zhang, W. Lou, and Y. T. Hou,
“Squeezing more utility via adaptive clipping on differentially private
gradients in federated meta-learning,” in Proceedings of the 38th Annual
Computer Security Applications Conference, pp. 647–657, 2022.

[2] R. S. Antunes, C. André da Costa, A. Küderle, I. A. Yari, and
B. Eskofier, “Federated learning for healthcare: Systematic review and
architecture proposal,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 13, no. 4, pp. 1–23, 2022.

[3] Y. Chang, H. Liu, E. Jaff, C. Lu, and N. Zhang, “Sok: Security and
privacy risks of medical ai,” arXiv preprint arXiv:2409.07415, 2024.

[4] J. Morgan, “Federated learning meets blockchain.” https://www.
jpmorgan.com/technology/news/federated-learning-meets-blockchain,
2024. Accessed: 2024-11-18.

[5] L. Babun, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “Real-time
analysis of privacy-(un) aware iot applications,” Proceedings on Privacy
Enhancing Technologies, 2021.

[6] H. Chen, J. Ding, E. W. Tramel, S. Wu, A. K. Sahu, S. Avestimehr,
and T. Zhang, “Self-aware personalized federated learning,” Advances
in Neural Information Processing Systems, vol. 35, pp. 20675–20688,
2022.

[7] H. Liu, Y. Wu, Z. Yu, and N. Zhang, “Please tell me more: Privacy im-
pact of explainability through the lens of membership inference attack,”
in 2024 IEEE Symposium on Security and Privacy (SP), pp. 4791–4809,
IEEE, 2024.

[8] L. Zhu, H. Lin, Y. Lu, Y. Lin, and S. Han, “Delayed gradient averaging:
Tolerate the communication latency for federated learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 29995–30007,
2021.

[9] F. Zhang, X. Liu, S. Lin, G. Wu, X. Zhou, J. Jiang, and X. Ji, “No one
idles: Efficient heterogeneous federated learning with parallel edge and
server computation,” in International Conference on Machine Learning,
pp. 41399–41413, PMLR, 2023.

[10] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[11] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[12] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “Fe-
dat: A high-performance and communication-efficient federated learning
system with asynchronous tiers,” in Proceedings of the international
conference for high performance computing, networking, storage and
analysis, pp. 1–16, 2021.

[13] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
Advances in neural information processing systems, vol. 30, 2017.

[14] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[15] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel
stochastic gradient descent with double-pass error-compensated com-
pression,” in International Conference on Machine Learning, pp. 6155–
6165, PMLR, 2019.

[16] J. Li and H. Huang, “Resolving the tug-of-war: a separation of com-
munication and learning in federated learning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[17] Y. Xiong, R. Wang, M. Cheng, F. Yu, and C.-J. Hsieh, “Feddm: Iterative
distribution matching for communication-efficient federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16323–16332, 2023.

[18] H.-P. Wang, S. Stich, Y. He, and M. Fritz, “Progfed: Effective, com-
munication, and computation efficient federated learning by progressive
training,” in International Conference on Machine Learning, pp. 23034–
23054, PMLR, 2022.

[19] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, pp. 1273–1282, PMLR,
2017.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[21] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning, pp. 5132–5143,
PMLR, 2020.

[22] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[23] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “A general theory
for federated optimization with asynchronous and heterogeneous clients
updates,” Journal of Machine Learning Research, vol. 24, no. 110, pp. 1–
43, 2023.

[24] E. Ekaireb, X. Yu, K. Ergun, Q. Zhao, K. Lee, M. Huzaifa, and T. Ros-
ing, “ns3-fl: Simulating federated learning with ns-3,” in Proceedings of
the 2022 Workshop on ns-3, pp. 97–104, 2022.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[26] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[27] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-
IEEE conference on computer communications, pp. 1698–1707, IEEE,
2020.

[28] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[29] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[30] M. Chen, B. Mao, and T. Ma, “Efficient and robust asynchronous
federated learning with stragglers,” in International Conference on
Learning Representations, 2019.

[31] H. Qin, S. Rajbhandari, O. Ruwase, F. Yan, L. Yang, and Y. He,
“Simigrad: Fine-grained adaptive batching for large scale training us-
ing gradient similarity measurement,” Advances in Neural Information
Processing Systems, vol. 34, pp. 20531–20544, 2021.

[32] M. Fang, J. Liu, N. Z. Gong, and E. S. Bentley, “Aflguard: Byzantine-
robust asynchronous federated learning,” in Proceedings of the 38th
Annual Computer Security Applications Conference, pp. 632–646, 2022.

[33] Z. Wang, Q. Hu, X. Zou, P. Hu, and X. Cheng, “Can we trust the
similarity measurement in federated learning?,” IEEE Transactions on
Information Forensics and Security, 2025.

[34] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[35] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggregation,”
in International Conference on Artificial Intelligence and Statistics,
pp. 3581–3607, PMLR, 2022.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

