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Abstract 

 The paper describes a microcontroller system that can be used to digitize input analog 

signals and output digitized data. The system is based on RichArduino V3.0 design, which uses a 

Digilent CMOD A7 module that has a RSRC CPU, a pins module, and a UART serial interface 

that allows us to communicate with the microcontroller. We implement a wrapper design for the 

XADC that is integrated on to the die of the FPGA in the CMOD to digitize input analog signals. 

We then design the I2C serial interface based on the UART design to transfer data out to the 

DAC that we soldered on our custom shield. We also build a PCB board which is our custom 

shield that we could test and demonstrate the functionality of our RichArduino V4.0 design. In 

addition, we programmed a UART demo app to communicate with the microcontroller using our 

computer and we write the assembly program based on the V3.0 assembly code to support our 

UART demo app. The design is developed for educational purposes which is finished in 

reasonable time frame and therefore limitations exist. Further development and design could 

improve the performance of the microcontroller.  
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I. Introduction 

 The RichArduino V4.0 is based on the RSRC CPU that we have been used in previous 

coursework. We implement an I2C interface to transfer data out to DAC and a wrapper design to 

the XADC on the Xilinx Artix-7 FPGA die. We also design a custom shield PCB board that we 

could plug our CMOD A7 module on to the shield to evaluate and demonstrate our design. In 

terms of software, we write an assembly code and stored in our EPROM to serve as our 

bootloader. In addition, we implement a host downloader (UART Demo App) that we could 

interact with our RichArduino V4.0. The end goal is to upload a program in assembly using the 

host downloader and demonstrate the functionality where we could digitize incoming analog 

signal using XADC and output the data to the DAC on our shield where it can generate the same 

analog signal.  
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II. RichArduino Microcontroller System Architecture 

 The RichArduino V4.0 is built based on the RichArduino V3.0 design. The full block 

diagram of the system shows the content of Testbench that includes work that was done by the 

previous iteration of the course [Fig. 1]. The RSRC CPU, EPROM and SRAM are provided as 

the basic controller architecture. The PINS module and the serial UART interface were previous 

contribution of the course. We utilize the UART module to debug and upload our program to the 

microcontroller. The DCM (Digital Clock Manager) is used to provide a 48 MHz clock to the 

system based on the input clock of 12 MHz that is on the CMOD A7 board.  

 The I2C serial interface and the XADC wrapper is our focus design this year. The I2C 

module has 2 bit of address lines, 32 bit of data lines, a chip enable, a write enable, an output 

enable, an input clock from the DCM, a reset signal and a pair of data lines out to the I2C 

devices. The SCL is the serial clock line and SDA is the serial data line. Although I2C slave 

devices can drive the SDA, in our application, the microcontroller drives both SCL and SDA, 

except when the slave device ACK, where the slave drives SDA for very short period. The 

microcontroller output a 400 KHz clock on the SCL as it is the max speed support by the I2C 

slave device. Two bit of address lines allow us to have 4 WORD of address space or 4 registers. 

We utilize three of them: a BUSY flag register [Fig. 2], an Output Register [Fig. 3], and an ACK 

register [Fig. 4]. The BUSY flag will be set when the transmitter is sending data. The transmitter 

will start sending when Output Register is set, and the ACK register will be set when slave 

device ACK at the right time. The I2C bus is byte oriented and our slave device needs to receive 

three bytes, therefore there are total of three ACKs. Our slave device is a 10-bit I2C DAC, 

according to its data sheet [1]. In order to write to the DAC, master device (RichArduino) needs 

to write three bytes of data and the DAC will ACK each time it successfully receives a byte. In 
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my design, I implement the I2C a word-based version, where the output register receives all three 

bytes that will be sent and send the data bits in sequence all at once. The ACK register then 

stores all three ACK bit in one register.  

 The XADC wrapper creates a module that wraps the XADC LogiCore IP and maps the 

corresponding pins out to the testbench. The configuration for the XADC IP is shown in [Fig. 5] 

where we use DRP as our data interface and Single Channel mode for the operation of the 

XADC. We also enable the reset_in pin and set the timing to Continuous Mode so that we can 

get a sample any time we want. For the DRP timing, we set the DCLK frequency to match our 

DCM frequency of 48 MHz, and the ADC Conversion Rate is set to the lowest possible value, 39 

KSPS. Our I2C DAC is only capable of running at 400 KHz where it acquires 3 Bytes or 16 Bits 

per sample. Through calculation, 39 K samples per second is still much more than the DAC can 

handle. We also set the acquisition time to the lowest possible value and not check the Bipolar 

selection since our circuitry is running in unipolar mode [Fig. 6]. The diagram shows two analog 

signals where we can switch between the two. AN15 is connected to the electret microphone on 

our shield and AN16 is connected to the coaxial port on our shield. My implementation also adds 

a done signal where it is not shown on the block diagram. According to the XADC user guide 

[2], the digitized data from the XADC should only be captured when the DRDY signal is set and 

therefore a done signal should be used to tell the CPU that the data is ready. More details on the 

implementation will be discussed in the VHDL overview section. 
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III. RichArduino Microcontroller FPGA VHDL Overview 

 We use Xilinx Vivado CAD tool to design our internal circuit inside the Artix-7 FPGA. 

VHDL (Very High-Speed Integrated Circuit Hardware Description Language) uses RTL 

(Register-transfer level) abstraction to create high-level representations of circuitry, where it can 

derive lower-level circuit wiring using logic gates. It usually contains registers that hold data, 

combination logic that defines state input and clocks that control state changes.  

 In our design, we reference many of the VHDL code from the VHDL tutorial document 

[3] that Prof. Richard provides to us. On the top level, we have a testbench that holds all the 

components that is shown in the block diagram. The structural VHDL of the testbench will 

instantiate lower-level components. Testbench has an input clock from the CMOD A7 board, a 

reset button input, serial in and out that is used in the UART module, io pins that is used in the 

PINS module, SCL and SDA used in I2C module and VAUX analog pair input from analog pins. 

We declare each component that we need to port into the testbench, and we tie those wires from 

each component to the wires in the testbench using PORT MAP. We also use SIGNALs as 

internal wires. In addition, we create a memory map [Fig. 7] and tie the specific memory space to 

each component through their chip enable signal. When the CPU receives specific address, it will 

enable the corresponding component in testbench. Our EPROM component is mapped to the 

bottom of the memory, at location 0000 0000H, having 1K word or 4KB. Therefore, we put our 

bootloader in the EPROM module so that it will start running our bootloader program when the 

system startup. SRAM is mapped on top of the EPROM, starting at location 4096, also have 

4KB. PINS module is at the top of memory map, at location -16, having 16B. UART module is 

one down below the PINS module, at location -32, having 16B. I2C is one down below the 

UART module, at location -48, having also 16B. Between XADC and I2C, there is hole because 
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we would like to map XADC at the multiple of its address space, which 512B. Therefore, XADC 

is mapped at location -1024, having 512B of address space.  

 In our implementation of the I2C component, we use the basic code layout that was 

developed for the UART module. We use counter to generate a 400 KHz clock. Our system 

clock from DCM is 48 MHz, we cannot directly use our system clock, so we have to use counter 

to manually generate a slower clock in our I2C component. According to the I2C Specification 

Sheet [4], SCL and SDA have pull up resistors. This indicate that both SCL and SDA are open 

drain circuits. Therefore, when we indicate a logic one or high in VHDL for SCL and SDA lines, 

we use ‘Z (High Impedance)’ instead of ‘1’. When we start transmitting data, we first drop SDA 

low then drop SCL low to indicate a start bit. During our transmission, we make sure that SDA is 

only changed when SCL is logic low, and SDA stays stable when SCL is high. We first send the 

address byte that is given on the datasheet and look for an ACK bit. Then we send another byte 

that includes two power down option bits and four data bits. Finally, we send the last byte that 

includes the last six data bits. When we finish transmitting, we first pull SDA high then pull SCL 

back to high to indicate a stop bit. We also make sure that the timing requirements is met in our 

design.  

 For our XADC wrapper, we first instantiate the XADC IP in the VHDL. The tool will 

generate an instantiation template file that we can use to declare and instantiate the XADC IP 

component. Since we already set the corresponding clock frequency in the configuration GUI 

[Fig. 5], we can directly tie the DCLK to our system clock in our wrapper. We are also only 

reading samples from the XADC but not writing to it. Therefore, we feed all zeros to the input 

data bus and tie a logic zero to the write enable pin to indicate read operation. The VP pair is also 

tie to logic zero because we are using auxiliary analog input pair instead of the dedicated analog 
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input pair. We do not instantiate all the ports for the IP that we do not necessarily need for 

simplicity. In my implementation, I add a tristate buffer and a done signal because the data 

coming out from the XADC is only valid when it indicates that the data is ready. Therefore, we 

should only pass the valid data out to the main data bus when the data is ready. As our reset_l 

signal is active-low signal and the reset_in signal for the XADC is active-high, I also add a 

synchronous flip-flop to revert our reset signal. 
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IV. RichArduino Boot Monitor 

 The boot monitor program serves our bootloader of the microcontroller where we put the 

program in the EPROM, so it runs at startup. The boot monitor is capable of downloads a binary 

RSRC assembly program and executes (P), peek (R) and poke (W) for the specific register at 

specific address and check current microcontroller version (V), which is V4.0 for this semester. 

The UART serial interface makes the boot monitor possible to communicate with our host 

device, which is our PC. Previous course work has developed the functionality of downloads the 

assembly program and executes it. Our boot monitor is built based on Meagan Konst’s boot 

monitor code [5]. 

 The basic concept for each functionality is similar. Any time we want to read from the 

UART, we first check if the RX data flag is set. RX data flag will tell whether there is incoming 

data through the UART. Then, the program checks the incoming character from the host to see 

which function to proceed. If the character is P, then it will branch to the section where it starts 

to download assembly binary program and executes it. The program will be stored into our 

SRAM, which is located at address 4096 and then branch to address 4096 to start executing 

program in the SRAM. If the character is W, then it will branch to poke section. It will first 

receive a 32-bit address, one byte at a time. Then receive a 32-bit data, also one byte at a time. 

Both address and data are in big-endian format. It would then write the 32-bit data to the 32-bit 

address. Whenever we need to send data, we also need to check the TX busy flag. TX busy flag 

will tell whether the microcontroller is still sending data through the UART. If the character is R, 

it would receive a 32-bit address and read the data from the address. Then it would send the 32-

bit data back to host. If the character is V, then it would simply send back 04H, which indicates 

current version number is V4.0. We use the SRC Simulator [6] to compile our assembly program 
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into binary where we can use it to download to our microcontroller. Our boot monitor is 

converted from the binary file into eprom.vhd file as it is hard coded into the EPROM module 

when we use Vivado the wire our internal logic circuits. The full code block with comments is 

attached to the bottom [Fig. 8]. 
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V. Host Downloader 

 To communicate with our microcontroller, we also need to program a host downloader on 

our PC. Python has many great libraries to build simple serial communication GUI app therefore 

I choose to use python to write my host downloader (UART GUI App) [Fig. 9]. One of the pre-

installed GUI libraries is tkinter. For a simple serial comm app, tkinter is sufficient. For serial 

communication programming, python also pre-installed the serial library that we can use to do 

UART communication. Our microcontroller has hard coded UART baud rate of 115200 with no 

parity bit and one stop bit. Therefore, I can also hard code these properties in my host 

downloader. However, the COM port number is not hard coded as it might be changed every 

time and that is also useful in real-life application.  

 For each functionality, it would first write a single character to notify the microcontroller 

which function that will be used. For example, it would write ascii character ‘W’ to indicate poke 

function. Then it would start writing 32-bit address and 32-bit data in big-endian format to the 

microcontroller. All write operations use similar method except the download program function 

will need to have extra steps to parse the binary file, calculate the size of the binary file, and send 

the data line by line. The host downloader has a separate thread that monitors all the incoming 

data from the microcontroller because the read function is a blocking function. It will convert all 

incoming data into hexadecimal form and display it on the receiving data section. All the input 

form for sending is also in hexadecimal form.  

 The download program functionality supports both direct path input of a binary file or 

browse file explorer to select a binary file for simplicity [7]. Information window would also pop 

out when COM port is not connected or unable to open. Read operation might also pop out 

information window to indicate exception when reading from the UART.  
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VI. RichArduino Demo Shield Architecture 

 Our host downloader in a way demonstrates that our RSRC CPU, EPROM, SRAM, and 

UART works. To assess the functionality of other module, we build a PCB board to serve as our 

demo shield that we can plug our CMOD A7 board into it. We sketch our schematic based on the 

demo shield block diagram [Fig. 10]. We use a LDO (Low-drop regulator) voltage regulator to 

convert our 5V voltage from the CMOD A7 board to 3.3V. Electret microphone and a 

preamplifier is used to feed in audio analog signal to one of our analog input pins. Another 

analog input would be from the coaxial port. One the output side, we have a I2C DAC as well as 

an LED. The LED is only for testing purposes and the I2C DAC is used to output our received 

digitized signal. We use ExpressSCH to sketch the schematics and ExpressPCB to draw the 

layout of the PCB board since our manufacture service is also provided by ExpressPCB.  

 In the full detailed schematic [Fig. 11], we first sketch the circuit for the op amp and the 

electret microphone. By reading the datasheet of the MAX4466 preamplifier and the electret 

microphone [8, 9], we can apply the recommended application circuit from the datasheet to our 

schematic, including microphone bias network circuit, preamplifier bypass and supply filter 

circuit. Then we also complete the circuit for the LDO using the recommended circuit drive on 

its datasheet [10]. For the I2C DAC, the datasheet recommends that supply should be decoupled 

with 10 µF in parallel with a 0.1 µF capacitor to GND [1]. The specification of the I2C serial bus 

also gives recommendations on the value of the pull up resistors. Here we use 2K resistors as our 

pull ups. We also tie A0 pin to GND for I2C addressing. For all the supply filtering, we add 

ferrite beads in parallel to our VCC to filter high frequency noise. By reading the schematic of 

the power supply on the CMOD A7 board [11], we think that ferrite beads are necessary for our 

circuit.  
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 After finishing schematic, we can draw the layout for the PCB board for fabrication. We 

follow the specifications of the ExpressPCB Miniboard Pro 4 layer [12] as it would our actual 

fabrication standard. The layout of the PCB is basically following the schematic with some 

design consideration on the wiring such as trace impedance, the size of the pins, and the size of 

those components. We also need to make a custom component for the preamp as its package 

standard is not in the library of the ExpressPCB tool. All my components are on the top layer of 

the PCB board where only one trace is on the bottom layer because the orientation of SCL and 

SDA pins on the DAC is the opposite to our CMOD A7 pins layout.  
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VII. RichArduino Demo Shield Demo Program 

 The shield demo program is also programmed and compiled using the SRC Simulator [6]. 

The program starts at address 4096 as it will be stored into SRAM when the bootloader 

downloads the program. The main function of the program is reading the XADC data register 

then check the UART busy flag. If the UART is busy, then it would continue branch back to read 

XADC data register until the UART is not busy. Once UART is not busy, it would convert the 

data from the XADC to the data that the would be needed. The XADC output 12 bits of data but 

the DAC needs only 10 bits of data. Therefore, we need to convert it down to 12 bits and set the 

corresponding power down mode bits to zeros. Lastly, we send the data with the right format by 

storing the data in the specific register at the address for the UART output register. And then 

branch back to continue looping the entire process.  

 

 

 

 

 

 

 

 

 



14 
 

VIII. Results/Discussion 

 We first solder all the components on the PCB board before we complete our 

microcontroller design. We apply little solder paste on all the pads and put the corresponding 

components on the pads. We then heat it, and those components would recenter themselves to 

appropriate position thanks to the soldering mask on the PCB board. We also solder a 48 DIP 

socket in the through holes because we want to leave more flexibility on the CMOD A7 board 

where we can take it off if we use the socket. We also end up cleaning up some solder where it 

might cause shorts on some the small IC package pins using microscope. The finished board 

[Fig. 12] have solid performance for what we need to accomplish. The supply voltage from the 

LDO is stable and the performance of the DAC as well as the preamplifier are also as expected.  

During initial testing, we first test the functionality of the I2C interface by sending the 

right data bits to the I2C DAC. When send maximum value to the DAC, we can measure that the 

DAC is outputting maximum voltage, which is 3.3V in our case. We then tie the input analog 

signal pin to the input of the microphone preamp. We are able to watch the output register 

changes as we speak to the microphone. For the final completion of the project, we tie the input 

analog signal pin to the input of the coaxial port, which allows us to get a sine wave from a 

function generator into the coaxial port and output the same sine wave by probing the output of 

the DAC on an oscilloscope.  

When we first design the I2C interface, we use roughly the same frequency as the 115200 

baud rate UART module in our counter. It works but it does not max out the performance of the 

DAC. In addition, when we probe it under the oscilloscope, we can see clearly that the output of 

the DAC does not give a very continuous wave because the frequency was too low. After 
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remodifying the I2C design to max out its performance, we can see a much more beautiful sine 

wave coming out of the DAC based on the input.  

One of the possible outcomes of the project is to digitize the analog audio signal and 

transmit the data using a faster speed UART design to our PC. In my opinion, this idea is much 

cooler than what I have finished. If we had more time, I would definitely adopt this demo idea. It 

would involve more research and learning on the XADC setup, and we would look more into the 

audio signal that we transmit to our PC for sampling. Our current design only looks into the 

minimum of the XADC function, where we only use single channel and not use any of the 

calibration, averaging or multiplexer settings. However, take into account of the time we have 

for this semester to complete the project, we have done much to learn a lot on computer systems 

design.  
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IX. Conclusions 

 The RichArduino V4.0 is a good educational project that we complete for this year’s 

capstone design. We managed to learn and implement one serial communication protocol, the 

I2C interface and learn to implement the onboard XADC IP. We tried to finish the project with 

the highest standards possible with the limited time we have. With hands on PCB wiring and 

interacting with ICs, we can learn more about real-life computer system design applications. 

There are a lot more things we need to consider into our design besides all the theories that we 

learn from circuit class or logic class. I think the only downsides is that our time is so limited that 

we cannot get to learn more about PCB using better CAD tools such as Cadence. We could not 

also get to do more fun things like digitizing audio analog signal and transmit it through UART 

to our PC. Overall, the project is fun, and I like it. If we could do a little more than what we have 

accomplished, that would be even better.  

 

  



17 
 

X. References 

[1] 2.5 V to 5.5 V, 120 μA, 2-Wire Interface,Voltage-Output 8-/10-/12-Bit DACs Data Sheet, 

Analog Devices 

[2] 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital 

Converter User Guide, Xilinx, Inc. 

[3] EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT SYNTHESIZABLE 

VHDL BUT WERE AFRAID TO ASK, William D. Richard, Ph.D. 

[4] The I2C-BUS Specification, Version 2.1, Philips Semiconductors 

[5] Boot Monitor Code Developed by Meagan Konst 

[6] SRC Simulator (SRCTools Version 3.1.1), Computer Systems Design and Architecture, 

2nd Edition, Heuring and Jordan 

[7] “File explorer in python using Tkinter,” GeeksforGeeks, 15-Feb-2021. 

https://www.geeksforgeeks.org/file-explorer-in-python-using-tkinter/.  

[8] Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete 

Shutdown Data Sheet, Maxim Integrated 

[9] PUI Audio’s omnidirectional electret condenser microphones Data Sheet, PUI Audio, Inc.  

[10] 150mA Low Noise µCap CMOS LDO Data Sheet, Micrel Semiconductor 

[11] Cmod A7 Schematic Rev B.1, Digilent, Inc. 

[12] ExpressPCB Manufacturing Specifications, ExpressPCB, LLC 

 

 

 

https://www.geeksforgeeks.org/file-explorer-in-python-using-tkinter/


18 
 

 

Fig. 1 RichArduino V4.0 Full Block Diagram 
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Fig. 2 I2C Busy Flag Register Notation 
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Fig. 3 I2C Output Register Notation 
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Fig. 4 I2C ACK Register Notation 
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Fig. 5 XADC Wizard Configuration Basic Setup 
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Fig. 6 XADC Wizard Single Channel Setup showing channel running at unipolar mode 
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Fig. 7 RichArduino V4.0 Memory Map 
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 .org 0  ; Program starts at address 0 

 la r24,TOP ; TOP Label 

 la r23,LB2 ; P Program Branch Label 

 la r22,LB10 ; W Program Branch Label 

 la r21,LB18 ; R Program Branch Label 

 la r20,LB26 ; V Program Branch Label 

 

 la r1,END ; END Label Address 

 la r2,4096 ; SRAM Starting Address 

 la r3,4096 ; SRAM Address Pointer 

 la r4,80  ; ASCII Code for P 

 la r5,87  ; ASCII Code for W 

 la r6,82  ; ASCII Code for R 

 la r7,86  ; ASCII Code for V 

 

TOP: ld  r31,-24(r0) 

 brzr r24,r31 ; Checking RX Data Flag 

 

 ld r31,-20(r0); Load the input 

 

 sub r30,r4,r31 

 brzr r23,r30 ; Branch to P Program if it is P 

 

 sub r30,r5,r31 

 brzr r22,r30 ; Branch to W Program if it is W 

 

 sub r30,r6,r31 

 brzr r21,r30 ; Branch to R Program if it is R 

 

 sub r30,r7,r31 

 brzr r20,r30 ; Branch to V Program if it is V 

 

 br r24  ; Branch back to TOP if none matched 

 

LB26: ld r31,-32(r0) 

 brnz r20,r31 ; Checking TX Busy Flag 

 la r30,4  ; byte 04H to send 

 st r30,-28(r0); Store to TX_DATA, send data out 

 

 br r24  ; Branch back to TOP 

  

 

LB18: la r19,LB19 ; Loop Label 19 

 la r18,LB20 ; Loop Label 20 

 la r17,LB21 ; Loop Label 21 

 la r16,LB22 ; Loop Label 22 

 la r15,LB23 ; Loop Label 23 

 la r14,LB24 ; Loop Label 24 

 la r13,LB25 ; Loop Label 25 

 

 ld  r31,-24(r0) 

 brzr r21,r31 ; Checking RX Data Flag 
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 ld r30,-20(r0); Load the input 

 shl r29,r30,24 ; Shifting according to Big Endian System 

 

LB19: ld  r31,-24(r0) 

 brzr r19,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r28,r30,16 ; Shifting according to Big Endian System 

 

LB20: ld  r31,-24(r0) 

 brzr r18,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r27,r30,8 ; Shifting according to Big Endian System 

 

LB21: ld  r31,-24(r0) 

 brzr r17,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 

 or r26,r29,r28; Assembling Address in r26 

 or r26,r26,r27 

 or r26,r26,r30 

 

 ld r30,0(r26) ; Load 32 bit data of the address in r26 

 

 shr r29,r30,24 ; Shift right 24 bits for Big Endian System 

LB22: ld r31,-32(r0) 

 brnz r16,r31 ; Checking TX Busy Flag 

 st r29,-28(r0); Store to TX_DATA, send data out 

  

 shr r29,r30,16 ; Shift right 16 bits for Big Endian System 

LB23: ld r31,-32(r0) 

 brnz r15,r31 ; Checking TX Busy Flag 

 st r29,-28(r0); Store to TX_DATA, send data out 

 

 shr r29,r30,8 ; Shift right 8 bits for Big Endian System 

LB24: ld r31,-32(r0) 

 brnz r14,r31 ; Checking TX Busy Flag 

 st r29,-28(r0); Store to TX_DATA, send data out 

 

LB25: ld r31,-32(r0) 

 brnz r13,r31 ; Checking TX Busy Flag 

 st r30,-28(r0); Store to TX_DATA, send data out 

 

 br r24  ; Branch back to TOP 

  

 

LB10: la r19,LB11 ; Loop Label 11 

 la r18,LB12 ; Loop Label 12 

 la r17,LB13 ; Loop Label 13 
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 la r16,LB14 ; Loop Label 14 

 la r15,LB15 ; Loop Label 15 

 la r14,LB16 ; Loop Label 16 

 la r13,LB17 ; Loop Label 17 

 

 ld  r31,-24(r0) 

 brzr r22,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r29,r30,24 ; Shifting according to Big Endian System 

 

LB11: ld  r31,-24(r0) 

 brzr r19,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r28,r30,16 ; Shifting according to Big Endian System 

 

LB12: ld  r31,-24(r0) 

 brzr r18,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r27,r30,8 ; Shifting according to Big Endian System 

 

LB13: ld  r31,-24(r0) 

 brzr r17,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 

 or r26,r29,r28; Assembling Address in r26 

 or r26,r26,r27 

 or r26,r26,r30 

 

LB14: ld  r31,-24(r0) 

 brzr r16,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r29,r30,24 ; Shifting according to Big Endian System 

 

LB15: ld  r31,-24(r0) 

 brzr r15,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r28,r30,16 ; Shifting according to Big Endian System 

 

LB16: ld  r31,-24(r0) 

 brzr r14,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r27,r30,8 ; Shifting according to Big Endian System 

 

LB17: ld  r31,-24(r0) 

 brzr r13,r31 ; Checking RX Data Flag 
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 ld r30,-20(r0); Load the input 

 

 or r25,r29,r28; Assembling Instruction in r25 

 or r25,r25,r27 

 or r25,r25,r30 

 

 st r25, 0(r26); Storing Data into Address 

 

 br r24  ; Branch back to TOP 

 

 

LB2: la r19,LB3 ; Loop Label 3 

 la r18,LB4 ; Loop Label 4 

 la r17,LB5 ; Loop Label 5 

 la r16,LB6 ; Loop Label 6 

 la r15,LB7 ; Loop Label 7 

 la r14,LB8 ; Loop Label 8 

 la r13,LB9 ; Loop Label 9 

 

 ld  r31,-24(r0) 

 brzr r23,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r29,r30,24 ; Shifting according to Big Endian System 

 

LB3: ld  r31,-24(r0) 

 brzr r19,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r28,r30,16 ; Shifting according to Big Endian System 

 

LB4: ld  r31,-24(r0) 

 brzr r18,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r27,r30,8 ; Shifting according to Big Endian System 

 

LB5: ld  r31,-24(r0) 

 brzr r17,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 

 or r26,r29,r28; Assembling # of Code Bytes (N) in r26 

 or r26,r26,r27 

 or r26,r26,r30 

 

 brzr r1,r26 ; Branch to END if N = 0 

 

LB6: ld  r31,-24(r0) 

 brzr r16,r31 ; Checking RX Data Flag 
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 ld r30,-20(r0); Load the input 

 shl r29,r30,24 ; Shifting according to Big Endian System 

 

LB7: ld  r31,-24(r0) 

 brzr r15,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r28,r30,16 ; Shifting according to Big Endian System 

 

LB8: ld  r31,-24(r0) 

 brzr r14,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 shl r27,r30,8 ; Shifting according to Big Endian System 

 

LB9: ld  r31,-24(r0) 

 brzr r13,r31 ; Checking RX Data Flag 

 

 ld r30,-20(r0); Load the input 

 

 or r25,r29,r28; Assembling Instruction in r25 

 or r25,r25,r27 

 or r25,r25,r30 

 

 st r25,0(r3) ; Place Instruction in SRAM 

 addi r3,r3,4 ; Move Pointer to Next Word Address 

 addi r26,r26,-4 ; Decrement Number of Bytes to Read 

 brnz r16,r26 ; Branch if More Bytes to Read 

 

 br r2  ; Branch to SRAM to start executing downloaded 

code 

 

END: stop 

 

Fig. 8 RichArduino V4.0 Boot Monitor Full Code Block 
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Fig. 9 RichArduino Host Downloader GUI App Interface 
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Fig. 10 Demo Shield Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

Fig. 11 Demo Shield Full Schematic 
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Fig. 12 Complete Demo Shield Product with CMOD A7 board 


